HW one, MTH 418, Spring 2016

Ayman Badawi

QUESTION 1. (i) Let $V=\{2,4,5,6,8\} \subset Z_{10}$. Two vertices $v_{1}, v_{2} \in V$ are connected by an edge iff $v_{1} * v_{2}=0$ (* * here means multiplication module 10). Construct such graph. Is it a $B_{n, m}$ for some n, m ? Find the Girth and the diameter of the graph.
(ii) Let $V=\{3,5,6,9,10,12\} \subset Z_{15}$. Two vertices $v_{1}, v_{2} \in V$ are connected by an edge iff $v_{1} * v_{2}=0$ (* here means multiplication module 15). Construct such graph. Is it a $B_{n, m}$ for some n, m ? Find the Girth and the diameter of the graph.
(iii) Let $V=\{0,1,2,3,4,5,6,7\}=Z_{8}$. Two vertices $v_{1}, v_{2} \in V$ are connected by an edge iff $v_{1}+v_{2} \in\{0,2,4,6\}$. (note that + here means addition module 8). Construct such graph. Show that the graph is not connected. What is $d\{3,1\}$? What is $d(1,4)$?. Show that the graph is the union of two disjoint subgraphs, G_{1}, G_{2} such that each G_{i} is a complete induced subgraph.
(iv) Let $V=\{0,1,2,3,4,5,6,7,8\}=Z_{9}$. Two vertices $v_{1}, v_{2} \in V$ are connected by an edge iff $v_{1}+v_{2} \in\{0,3,6\}$. (note that + here means addition module 9). Construct such graph. Show that the graph is not connected. What is $d\{3,2\}$? What is $d(5,8)$? Show that the graph is the union of two disjoint subgraphs, G_{1}, G_{2} where G_{1} is a complete induced subgraph and $G_{2}=B_{n, m}$ for some n, m is also an induced subgraph.

Due date: Thursday at noon Feb 18,2016 Faculty information

